Search results for "QCD matter"

showing 10 items of 23 documents

Transverse momentum spectra and nuclear modification factors of charged particles in pp, p-Pb and Pb-Pb collisions at the LHC

2018

We report the measured transverse momentum ($p_{\rm T}$) spectra of primary charged particles from pp, p-Pb and Pb-Pb collisions at a center-of-mass energy $\sqrt{s_{\rm NN}} = 5.02$ TeV in the kinematic range of $0.15<p_{\rm T}<50$ GeV/$c$ and $|\eta|< 0.8$. A significant improvement of systematic uncertainties motivated the reanalysis of data in pp and Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV, as well as in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, which is also presented. Spectra from Pb-Pb collisions are presented in nine centrality intervals and are compared to a reference spectrum from pp collisions scaled by the number of binary nucleon-nucleon collisions. For cent…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]heavy ion: scatteringHadronmomentum [up]binaryMULTIPLICITY DEPENDENCEPartonheavy ion: scattering ; transverse momentum: momentum spectrum ; quantum chromodynamics: matter ; parton: energy loss ; momentum: high ; up: momentum ; pp: scattering ; nucleus ; charged particle ; suppression ; energy dependence ; impact parameter ; transport theory ; nucleon nucleon ; CERN LHC Coll ; kinematics ; binarymomentum spectrum [transverse momentum]hiukkasfysiikkaKAONnucl-ex01 natural sciences7. Clean energy2760 GeV-cms/nucleonHigh Energy Physics - Experimenttransverse momentum: momentum spectrumHeavy Ion Experiments; Heavy-ion collision; Nuclear and high energy physicsHigh Energy Physics - Experiment (hep-ex)quark gluon plasma Heavy Ion Experiments Heavy-ion collisionnucleon nucleonHeavy-ion collisionhigh [momentum]PIONscattering [p p]transport theory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)impact parameterNuclear ExperimentNuclear ExperimentQCD matterparticle production and suppressionPhysicsPhysicsHADRONSheavy ion experiments heavy ion collision particle production and suppressionHeavy Ion Experiments; Heavy-ion collisionVDP::Kjerne- og elementærpartikkelfysikk: 431suppressionCENTRALITY DEPENDENCEcharged particleCharged particleMULTIPLICITY DEPENDENCE; CENTRALITY DEPENDENCE; HADRONS; SUPPRESSION; MODEL; KAON; PIONquark gluon plasma:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]:Nuclear and elementary particle physics: 431 [VDP]CERN LHC CollVDP::Nuclear and elementary particle physics: 431kinematicsHeavy Ion ExperimentImpact parameterParticle Physics - ExperimentHeavy Ion Experiments Heavy-ion collision Nuclear and High Energy Physics.Nuclear and High Energy Physicsp p: scatteringnucleon nucleon: scatteringenergy loss [parton]FOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]114 Physical sciencesenergy dependenceNuclear physicsPionHeavy Ion Experiments[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]scattering [heavy ion]0103 physical sciencesmatter [quantum chromodynamics]lcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530Nuclear Physics - Experiment5020 GeV-cms/nucleonup: momentum010306 general physicsp nucleus: scatteringquantum chromodynamics: matterta114010308 nuclear & particles physicshep-exnucleus:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]Nuclear and high energy physicsheavy ion collisionMODEL* Automatic Keywords *13. Climate actionmomentum: highQuark–gluon plasmalcsh:QC770-798High Energy Physics::Experimentparton: energy lossEnergy (signal processing)experimental results
researchProduct

Predictions for 5.023 TeV Pb + Pb collisions at the CERN Large Hadron Collider

2016

We compute predictions for various low-transverse-momentum bulk observables in √sNN = 5.023 TeV Pb+Pb collisions at the CERN Large Hadron Collider (LHC) from the event-by-event next-to-leading-order perturbative-QCD + saturation + viscous hydrodynamics (“EKRT”) model. In particular, we consider the centrality dependence of charged hadron multiplicity, flow coefficients of the azimuth-angle asymmetries, and correlations of event-plane angles. The centrality dependencies of the studied observables are predicted to be very similar to those at 2.76 TeV, and the magnitudes of the flow coefficients and event-plane angle correlations are predicted to be close to those at 2.76 TeV. The flow coeffic…

DYNAMICSParticle physicsMULTIPLICITIESFLOWPb+Pb collisionsHadronHEAVY-ION COLLISIONS114 Physical sciences01 natural sciencesNuclear physics0103 physical sciencesNUCLEAR COLLISIONSTRANSVERSE ENERGIESNuclear Experiment010306 general physicsNuclear theoryQCD matterPhysicsQuantum chromodynamicsLarge Hadron Colliderta114010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyMultiplicity (mathematics)ObservableQCDHigh Energy Physics::ExperimentLHCCentralityPhysical Review C
researchProduct

Effective Field Theory and Lattice QCD approaches for hard probes in QCD matter

2018

Hard Probes are an essential tool to discover the properties of the quark-gluon plasma created in heavy-ion collisions. The study of hard probes always involves taking into account very different energy scales, and this is precisely the situation in which Effective Fields Theories (EFTs) are useful. EFTs can be used to separate the short-distance and perturbative physics from the long-distance and non-perturbative. This method combined with Lattice QCD evaluations of the long-distance effects can provide accurate and first principles results. In this proceeding, I will report recent advances in this direction. Results from an EFT computation of quarkonium $R_{AA}$ at $\sqrt{s_{NN}}=5.02\,\t…

EFTSPhysicsParticle physics010308 nuclear & particles physicsComputationNuclear TheoryHigh Energy Physics::PhenomenologyFOS: Physical sciencesPlasmaLattice QCDQuarkonium01 natural sciencesHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesEffective field theory010306 general physicsEnergy (signal processing)QCD matter
researchProduct

Momentum anisotropy effects for quarkonium in a weakly coupled quark-gluon plasma below the melting temperature

2017

In the early stages of heavy-ion collisions, the hot QCD matter expands more longitudinally than transversely. This imbalance causes the system to become rapidly colder in the longitudinal direction and a local momentum anisotropy appears. In this paper, we study the heavy-quarkonium spectrum in the presence of a small plasma anisotropy. We work in the framework of pNRQCD at finite temperature. We inspect arrangements of non-relativistic and thermal scales complementary to those considered in the literature. In particular, we consider temperatures larger and Debye masses smaller than the binding energy, which is a temperature range relevant for presently running LHC experiments. In this set…

High Energy Physics - Theoryheavy ion: scatteringNuclear Theoryhiukkasfysiikka01 natural sciences7. Clean energy[ PHYS.HTHE ] Physics [physics]/High Energy Physics - Theory [hep-th]High Energy Physics - Phenomenology (hep-ph)quarkonium: heavyquarkonium: mass spectrum[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)AnisotropyNuclear Experiment[ PHYS.NUCL ] Physics [physics]/Nuclear Theory [nucl-th]quark gluon: plasmaQCD matterDebyeQuantum chromodynamicsPhysics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]quarkonium: momentumQuarkoniumHigh Energy Physics - PhenomenologyQuantum electrodynamicssymbolsquarkonium[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]FOS: Physical sciencesanisotropy[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]plasma: anisotropyNuclear Theory (nucl-th)Momentumsymbols.namesake0103 physical sciencesplasma: expansionparticle physicsquantum chromodynamics: perturbation theory010306 general physicsquantum chromodynamics: matterquantum chromodynamics: nonrelativisticta114effect: anisotropy010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyPlasmamomentum: anisotropyquarkonium: dissociationHigh Energy Physics - Theory (hep-th)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Quark–gluon plasma[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Physical Review D
researchProduct

Latest results from the EbyE NLO EKRT model

2017

We review the results from the event-by-event next-to-leading order perturbative QCD + saturation + viscous hydrodynamics (EbyE NLO EKRT) model. With a simultaneous analysis of LHC and RHIC bulk observables we systematically constrain the QCD matter shear viscosity-to-entropy ratio eta/s(T), and test the initial state computation. In particular, we study the centrality dependences of hadronic multiplicities, pT spectra, flow coefficients, relative elliptic flow fluctuations, and various flow-correlations in 2.76 and 5.02 TeV Pb+Pb collisions at the LHC and 200 GeV Au+Au collisions at RHIC. Overall, our results match remarkably well with the LHC and RHIC measurements, and predictions for the…

Nuclear and High Energy PhysicsParticle physicsNuclear TheoryHadronFOS: Physical sciences01 natural sciences114 Physical sciencesPhysics::Fluid DynamicsNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsNuclear ExperimentQCD matterPhysicsLarge Hadron Colliderta114010308 nuclear & particles physicssaturationElliptic flowHigh Energy Physics::PhenomenologyPerturbative QCDObservableMultiplicity (mathematics)heavy-ion collisionsHigh Energy Physics - Phenomenologynext-to-leading order perturbative QCD calculationsHigh Energy Physics::ExperimentKnudsen numberdissipative fluid dynamicsheavy-ion collisions next-to-leading order perturbative QCD calculations saturation dissipative fluid dynamicsNuclear Physics A
researchProduct

Pinning down QCD-matter shear viscosity in A + A collisions via EbyE fluctuations using pQCD + saturation + hydrodynamics

2015

We compute the initial energy densities produced in ultrarelativistic heavy-ion collisions from NLO perturbative QCD using a saturation conjecture to control soft particle production, and describe the subsequent space-time evolution of the system with hydrodynamics, event by event. The resulting centrality dependence of the low-$p_T$ observables from this pQCD + saturation + hydro ("EKRT") framework are then compared simultaneously to the LHC and RHIC measurements. With such an analysis we can test the initial state calculation, and constrain the temperature dependence of the shear viscosity-to-entropy ratio $\eta/s$ of QCD matter. Using these constraints from the current RHIC and LHC measu…

Nuclear and High Energy PhysicsParticle physicsNuclear TheoryHadronFOS: Physical sciences01 natural sciencesNuclear Theory (nucl-th)Nuclear physicsHigh Energy Physics - Phenomenology (hep-ph)initial energy densities0103 physical sciencesNuclear Experiment010306 general physicsNuclear theoryQCD matterPhysicsLarge Hadron Colliderta114010308 nuclear & particles physicsShear viscosityHigh Energy Physics::PhenomenologyPerturbative QCDObservableheavy-ion collisionsHigh Energy Physics - PhenomenologyHigh Energy Physics::ExperimentQCD matterNuclear Physics A
researchProduct

Pinning down QCD-matter shear viscosity in ultrarelativistic heavy-ion collisions via EbyE fluctuations using pQCD + saturation + hydrodynamics

2015

We introduce an event-by-event pQCD + saturation + hydro ("EKRT") framework for high-energy heavy-ion collisions, where we compute the produced fluctuating QCD-matter energy densities from next-to-leading order (NLO) perturbative QCD (pQCD) using saturation to control soft particle production, and describe the space-time evolution of the QCD matter with viscous hydrodynamics, event by event (EbyE). We compare the computed centrality dependence of hadronic multiplicities, p_T spectra and flow coefficients v_n against LHC and RHIC data. We compare also the computed EbyE probability distributions of relative fluctuations of v_n, as well as correlations of 2 and 3 event-plane angles, with LHC d…

Nuclear and High Energy PhysicsParticle physicsNuclear TheoryHadronperturbative calculationsFOS: Physical sciences01 natural sciencesSpectral lineNuclear physicsNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)ultrarelativistic heavy-ion collisions0103 physical sciences010306 general physicsNuclear ExperimentQCD matterQuantum chromodynamicsPhysicsLarge Hadron Colliderta114010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyPerturbative QCDMultiplicity (mathematics)ObservableQCDHigh Energy Physics - PhenomenologyhydrodynamicsHigh Energy Physics::ExperimentQCD matter
researchProduct

Event-by-event fluctuations in a perturbative QCD plus saturation plus hydrodynamics model : Determining QCD matter shear viscosity in ultrarelativis…

2016

We introduce an event-by-event perturbative-QCD + saturation + hydro ("EKRT") framework for ultrarelativistic heavy-ion collisions, where we compute the produced fluctuating QCD-matter energy densities from next-to-leading-order perturbative QCD using a saturation conjecture to control soft-particle production and describe the space-time evolution of the QCD matter with dissipative fluid dynamics, event by event. We perform a simultaneous comparison of the centrality dependence of hadronic multiplicities, transverse momentum spectra, and flow coefficients of the azimuth-angle asymmetries against the LHC and RHIC measurements. We compare also the computed event-by-event probability distribut…

PB-PB COLLISIONSMULTIPLICITIES01 natural sciences114 Physical sciencesGLUON DISTRIBUTION-FUNCTIONSquantum chromodynamicshydrodynamics model0103 physical sciencesFluid dynamics010306 general physicsNuclear ExperimentTRANSVERSE ENERGIESKINETIC-THEORYQCD matterPhysicsta114010308 nuclear & particles physicsDISSIPATIVE FLUID-DYNAMICSELLIPTIC FLOWShear viscosityElliptic flowHigh Energy Physics::PhenomenologyPerturbative QCDheavy-ion collisionsCENTRALITY DEPENDENCEFREEZE-OUTShear (geology)Quantum electrodynamicsRELATIVISTIC NUCLEAR COLLISIONSQuark–gluon plasmaDissipative system
researchProduct

Initial conditions in AA and pA collisions

2016

A full understanding of the spacetime evolution of the QCD matter created in a heavy ion collision requires understanding the properties of the initial stages. In the weak coupling picture these are dominated by classical gluon fields, whose properties can also be studied via the scattering of dilute probes off a high energy hadron or nucleus. A particular challenge is understanding small systems, where LHC data is also showing signs of collective behavior. We discuss some recent results of on the initial matter production and thermalization in heavy ion collisions, in particular in the gluon saturation framework.

Particle physicsCollective behaviorNuclear TheoryQC1-999HadronFOS: Physical sciencesGLUON PRODUCTION114 Physical sciences01 natural sciencesNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)quantum chromodynamics0103 physical sciencesNuclear Experiment010306 general physicsPLUS PB COLLISIONSNUCLEUSQCD matterPhysicsgluon fieldsLarge Hadron Colliderta114010308 nuclear & particles physicsScatteringPhysicsCGC PREDICTIONSHigh Energy Physics::PhenomenologyTRANSVERSE-MOMENTUMCOLOR GLASS CONDENSATEFIELDSEVOLUTIONGluonheavy ion collisionHigh Energy Physics - PhenomenologyCoupling (physics)ThermalisationLHCgluon saturationEPJ Web of Conferences
researchProduct

Fluid dynamics with saturated minijet initial conditions in ultrarelativistic heavy-ion collisions

2014

Using next-to-leading order perturbative QCD and a conjecture of saturation to suppress the production of low-energy partons, we calculate the initial energy densities and formation times for the dissipative fluid dynamical evolution of the quark-gluon plasma produced in ultrarelativistic heavy-ion collisions. We identify the framework uncertainties and demonstrate the predictive power of the approach by a good global agreement with the measured centrality dependence of charged particle multiplicities, transverse momentum spectra and elliptic flow simultaneously for the Pb+Pb collisions at the LHC and Au+Au at RHIC. In particular, the shear viscosity in the different phases of QCD matter is…

Particle physicsNuclear and High Energy PhysicsMULTIPLICITIESNuclear TheoryFLOWeducationTRANSIENT RELATIVISTIC THERMODYNAMICSFOS: Physical sciencesParton114 Physical sciences7. Clean energyNuclear Theory (nucl-th)Nuclear physicsGLUON DISTRIBUTION-FUNCTIONSHigh Energy Physics - Phenomenology (hep-ph)Fluid dynamicsNUCLEAR COLLISIONSTRANSVERSE ENERGIESNuclear ExperimentKINETIC-THEORYQCD matterPhysicsta114QUARKElliptic flowHigh Energy Physics::PhenomenologyPerturbative QCDCENTRALITY DEPENDENCEQCDCharged particleHigh Energy Physics - PhenomenologyQuark–gluon plasmaDissipative systemPhysics Letters B
researchProduct